A multiunit ADI scheme for biharmonic equation with accelerated convergence

نویسندگان

  • X. H. Tang
  • Christo I. Christov
چکیده

We consider the problem of acceleration of the Alternative Directions Implicit (ADI) scheme for Dirichlet problem for biharmonic equation. The second Douglas scheme is used as the main vehicle and two full time steps are organised in a single iteration unit in which the explicit operators are arranged differently for the second step. Using an a priori estimate for the spectral radius of the operator, we show that there exists an optimal value for the acceleration parameter. An algorithm is devised implementing the scheme and the optimal range of the parameter is verified through numerical experiments. One iteration unit speeds up the convergence from two to three times in comparison with the standard ADI scheme. To obtain more significant acceleration for the cases when the standard ADI scheme has extremely slow convergence, a generalised multiunit scheme is constructed by introducing another acceleration parameter and treating two consecutive iteration units as one basic element.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation

Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...

متن کامل

A Compact Scheme for a Partial Integro-Differential Equation with Weakly Singular Kernel

Compact finite difference scheme is applied for a partial integro-differential equation with a weakly singular kernel. The product trapezoidal method is applied for discretization of the integral term. The order of accuracy in space and time is , where . Stability and convergence in  norm are discussed through energy method. Numerical examples are provided to confirm the theoretical prediction ...

متن کامل

Convergence Analysis of a Quadrature Finite Element Galerkin Scheme for a Biharmonic Problem

A quadrature finite element Galerkin scheme for a Dirichlet boundary value problem for the biharmonic equation is analyzed for a solution existence, uniqueness, and convergence. Conforming finite element space of Bogner-Fox-Schmit rectangles and an integration rule based on the two-point Gaussian quadrature are used to formulate the discrete problem. An H2-norm error estimate is obtained for th...

متن کامل

On The Mean Convergence of Biharmonic Functions

Let denote the unit circle in the complex plane. Given a function , one uses t usual (harmonic) Poisson kernel for the unit disk to define the Poisson integral of , namely . Here we consider the biharmonic Poisson kernel for the unit disk to define the notion of -integral of a given function ; this associated biharmonic function will be denoted by . We then consider the dilations ...

متن کامل

Multiplicity result to some Kirchhoff-type biharmonic equation involving exponential growth conditions

In this paper‎, ‎we prove a multiplicity result for some biharmonic elliptic equation of Kirchhoff type and involving nonlinearities with critical exponential growth at infinity‎. ‎Using some variational arguments and exploiting the symmetries of the problem‎, ‎we establish a multiplicity result giving two nontrivial solutions‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJCSE

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2007